CAPI Working Group Warm low clouds breakout report

Lagoa das Sete Cidades (Lagoon of the Seven Cities), São Miguel, Azores

Investigator presentations

Joyce Penner

- Scrutinized observations and models to assess whether GCMs overestimate AIEs
- Cannot use PD data to estimate PD-PI
- Hemispheric differences in clouds may not support low AIEs

Cheng Zhou

- Running CAM 5.3 and using it to force CRM to compare
- Significant resolution dependence of LWP in CRM
- Opportunities to join with observational groups for constraints

Xiquan Dong

- Compared low cloud properties at SGP and Azores
- Contrasts in seasonality, microphysics, diurnal cycle
- Observations to constrain large scale models

Jim Hudson

- Compared CCN-drop concentration (N_d) closure in four field experiments
- Two marine Sc (MASE, POST); two trade Cu (RICO, ICE-T)
- Addition of spectral CCN info and vertical velocity improves regression between aerosols and N_d

Joyce Penner: Estimate "albedo effect" by normalizing to fixed LWP:

1.5

0.5 0.3 0.35 0.4 0.45 0.5 0.55 Albedo

Albedo effect: (first indirect effect):

change in cloudy sky albedo × cloud fraction × solar insolation = -1.8 to -2.2 Wm⁻² (range for f>0.5% to f>0.99%); Compare to Model:-2.65 Wm⁻² or -3.6Wm⁻² (w/same methodology)

Investigator presentations

Alexander Marshak

- Use range of satellite, Aeronet and ARM data to examine cloud-clear transition zone
- Half of all clear sky regions globally are within 5 km of cloud
- Increased scattering extends out several km from cloud

Yangang Liu

- Re-examination of dispersion effect (mitigation of Twomey as droplet dispersion increases with aerosol concentration)
- Consideration of more realistic supersaturation spectral shape can result in dispersion decreasing or increasing with aerosol concentration

Greg McFarquhar

- Analysis of many Cu penetrations in RACORO indicate increasing N_d with N_a , but also decreasing LWC with N_a
- Results suggest move from heterogeneous to homogeneous mixing with height

Jan Kazil

- Examined impact of open cell clouds on surface heat fluxes in LES
- Optically thick cloud produces cold pools that increase surface sensible flux that is conducive to maintenance of open cells

Warm cumulus (RACORO)

Cloud droplet concs increase with aerosol concs, but lots of scatter. Updraft strength more predictive?

Cloud LWP decreases with aerosol. Why?

Greg McFarquhar

Measurement/retrieval needs

LWP

- Improved multi-channel retrievals (near-term)
- Wetting problems getting resolved
- Separation of cloud and precipitation water using combination of different sensors

Cloud effective radius and droplet concentration

 Several groups producing retrievals but need to assess agreement and need for ground truth

Light precipitation

 New use of Doppler spectral information in cloud to separate clouds from drizzle

Entrainment

New estimates from radar

New approaches to sampling 3D clouds from surface

Scanning radars and surface radiometry

Field experiments

- RACORO [synergy with ALC, CLC]
 - 5 months regular sampling of clouds over SGP. Sc and Cu sampled with excellent cloud microphysics, aerosols, hygroscopicity
- T-CAP [synergy with ALC]
 - Wealth of information on aerosol vertical structure and connection between column aerosol and surface CCN properties
- Go-AMAZON [synergy with ALC, CLC]
 - Will produce wealth of data on shallow Amazonian clouds and impact of aerosol thereon
- Azores aircraft campaign [synergy with CLC]
 - Ground truth for cloud droplet concentration estimates
 - Relationship between surface and cloud base CCN
 - Entrainment impacts on cloud structure
- CORMORANT [synergy with ALC, CLC]
 - Measurements of marine trade Cu to examine factors controlling cloud cover
- Southern Ocean (SOCRATES) [synergy with ALC, CLC]
 - Provides proxies for preindustrial conditions for constraining climate models

Focus group idea

- Testing low clouds in models against observations using low cloud "testbed"
 - Use global or regional climate model run in CAPT or nudged mode to drive single column (continuously) and LES models (for particular cases)
 - Models can be tested against observations and used to explore sensitivities to assumptions about aerosols (PD vs PI or different emissions scenarios, aerosol processing/transport assumptions)
 - Ties in with objectives for CLC warm, low clouds group

Test Bed Approach

